Information extraction from semi-structured documents is crucial for frictionless business-to-business (B2B) communication. While machine learning problems related to Document Information Extraction (IE) have been studied for decades, many common problem definitions and benchmarks do not reflect domain-specific aspects and practical needs for automating B2B document communication. We review the landscape of Document IE problems, datasets and benchmarks. We highlight the practical aspects missing in the common definitions and define the Key Information Localization and Extraction (KILE) and Line Item Recognition (LIR) problems. There is a lack of relevant datasets and benchmarks for Document IE on semi-structured business documents as their content is typically legally protected or sensitive. We discuss potential sources of available documents including synthetic data.
翻译:从半结构文件提取信息对于无摩擦企业对企业(B2B)的通信至关重要。虽然数十年来一直在研究与文件信息提取(IE)有关的机器学习问题,但许多共同的问题定义和基准并不反映具体领域的问题以及使B2B文件通信自动化的实际需要。我们审查了文件IE问题、数据集和基准的概况。我们强调了共同定义中缺少的实际问题,并界定了关键信息本地化和提取(KILE)和线条识别问题。关于半结构商业文件的IE文件缺乏相关的数据集和基准,因为其内容通常受到法律保护或敏感。我们讨论了现有文件的潜在来源,包括合成数据。我们讨论了现有文件的潜在来源。