Metaheuristics are gradient-free and problem-independent search algorithms. They have gained huge success in solving various optimization problems in academia and industry. Automated metaheuristic design is a promising alternative to human-made design. This paper proposes a general and comprehensive methodological framework, AutoOpt, for automatically designing metaheuristics for various optimization problems. AutoOpt consists of: (1) a bi-level criterion to evaluate the designed algorithms' performance; (2) a general schema of the decision space from where the algorithms will be designed; (3) a mixed graph- and real number-based representation to represent the designed algorithms; and (4) a model-free method to conduct the design process. AutoOpt benefits academic researchers and practical users struggling to design metaheuristics for optimization problems. A real-world case study demonstrates AutoOpt's effectiveness and efficiency.
翻译:元体学是无梯度和问题独立的搜索算法,在解决学术界和工业界的各种优化问题方面取得了巨大成功。自动计量经济学设计是人造设计的一种很有希望的替代方法。本文件提出了一个通用和全面的方法框架,即自动操作,用于为各种优化问题自动设计计量经济学。自动操作包括:(1) 评估设计算法绩效的双级标准;(2) 设计算法的决策空间的一般模式;(3) 代表设计算法的图表和实际数字混合代表法;(4) 进行设计过程的无模型方法。自动操作有利于学术研究人员和实际用户为优化问题设计计量经济学。一个真实世界案例研究展示了Autoopt的效能和效率。