$1 - (1-x^M) ^ {2^M} > (1 - (1-x)^M) ^{2^M}$ is proved for all $x \in [0,1]$ and all $M > 1$. This confirms a conjecture about polar code, made by Wu and Siegel in 2019, that $W^{0^m 1^M}$ is more reliable than $W^{1^m 0^M}$, where $W$ is any binary erasure channel and $M = 2^m$. The proof relies on a remarkable relaxation that $m$ needs not be an integer, a cleverly crafted hexavariate ordinary differential equation, and a genius generalization of Green's theorem that concerns function composition. The resulting inequality is optimal, $M$ cannot be $2^m - 1$, witnessing how far polar code deviates from Reed--Muller code.
翻译:摘要:
本文证明了一个关于极化码的猜想,即对于所有 $x \in [0,1]$ 和 $M > 1$,都有 $1 - (1-x^M) ^ {2^M} > (1 - (1-x)^M) ^{2^M}$。这一结论在2019年由Wu和Siegel提出,本文的证明依赖于一个明显的放松条件,即$m$可以不是整数,一个巧妙设计的六元数常微分方程以及对函数合成的Green定理的天才推广。所得到的不等式是最优的,$M$ 不能等于 $2^m - 1$,展示了极化码与Reed-Muller码的巨大差异。