This paper formulates a general cross validation framework for signal denoising. The general framework is then applied to nonparametric regression methods such as Trend Filtering and Dyadic CART. The resulting cross validated versions are then shown to attain nearly the same rates of convergence as are known for the optimally tuned analogues. There did not exist any previous theoretical analyses of cross validated versions of Trend Filtering or Dyadic CART. To illustrate the generality of the framework we also propose and study cross validated versions of two fundamental estimators; lasso for high dimensional linear regression and singular value thresholding for matrix estimation. Our general framework is inspired by the ideas in Chatterjee and Jafarov (2015) and is potentially applicable to a wide range of estimation methods which use tuning parameters.
翻译:本文件为信号分解制定了一般交叉验证框架,然后将总框架应用于非参数回归法,如趋势过滤法和Dyadic CART。由此得出的交叉验证版本显示,其趋同率几乎达到最佳调控模拟的已知一致率。以前没有对趋势过滤法或Dyadic CART的交叉验证版本进行任何理论分析。为了说明这个框架的一般性,我们还提议并研究两个基本估测器的交叉验证版本;高维线回归法和矩阵估算的单值阈值。我们的总框架受Chatterjee和Jafarov(2015年)中的想法的启发,并有可能适用于使用调控参数的多种估算方法。