Construction of error-correcting codes achieving a designated minimum distance parameter is a central problem in coding theory. In this work, we study a very simple construction of binary linear codes that correct a given number of errors $K$. Moreover, we design a simple, nearly optimal syndrome decoder for the code as well. The running time of the decoder is only logarithmic in the block length of the code, and nearly linear in the number of errors $K$. This decoder can be applied to exact for-all sparse recovery over any field, improving upon previous results with the same number of measurements. Furthermore, computation of the syndrome from a received word can be done in nearly linear time in the block length. We also demonstrate an application of these techniques in non-adaptive group testing, and construct simple explicit measurement schemes with $O(K^2 \log^2 N)$ tests and $O(K^3 \log^2 N)$ recovery time for identifying up to $K$ defectives in a population of size $N$.


翻译:构建符合指定最低距离参数的错误校正代码是编码理论的一个中心问题。 在这项工作中,我们研究一个非常简单的二进制线性代码的构建,以纠正一定数量的误差 $K$。 此外,我们设计了一个简单、接近最佳的编码综合解码器。解码器的运行时间在代码的区段长度中只是对数,差错数量几乎是线性。这个解码器可以用于精确任何字段的所有零碎恢复时间,与以前的结果相比,以相同数量的测量数加以改进。此外,从一个收到的单词中计算综合症可以在块长度的近线性时间进行。我们还展示了这些技术在非适应性组测试中的应用,并用$(K%2 \log%2 N) 测试和$O(K%3 \log%2 N) 来构建简单的清晰测量方案。这个解码器可以用于精确任何字段的所有残缺的恢复时间,用相同数量的测量结果加以改进。此外,从一个单词中计算出综合症可以在块长度的近线性时间进行计算。 我们还演示了这些技术在非适应组的测试,并用$(K%2 $2 N) 和$ 和$ 。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
161+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员