Construction of error-correcting codes achieving a designated minimum distance parameter is a central problem in coding theory. In this work, we study a very simple construction of binary linear codes that correct a given number of errors $K$. Moreover, we design a simple, nearly optimal syndrome decoder for the code as well. The running time of the decoder is only logarithmic in the block length of the code, and nearly linear in the number of errors $K$. This decoder can be applied to exact for-all sparse recovery over any field, improving upon previous results with the same number of measurements. Furthermore, computation of the syndrome from a received word can be done in nearly linear time in the block length. We also demonstrate an application of these techniques in non-adaptive group testing, and construct simple explicit measurement schemes with $O(K^2 \log^2 N)$ tests and $O(K^3 \log^2 N)$ recovery time for identifying up to $K$ defectives in a population of size $N$.
翻译:构建符合指定最低距离参数的错误校正代码是编码理论的一个中心问题。 在这项工作中,我们研究一个非常简单的二进制线性代码的构建,以纠正一定数量的误差 $K$。 此外,我们设计了一个简单、接近最佳的编码综合解码器。解码器的运行时间在代码的区段长度中只是对数,差错数量几乎是线性。这个解码器可以用于精确任何字段的所有零碎恢复时间,与以前的结果相比,以相同数量的测量数加以改进。此外,从一个收到的单词中计算综合症可以在块长度的近线性时间进行。我们还展示了这些技术在非适应性组测试中的应用,并用$(K%2 \log%2 N) 测试和$O(K%3 \log%2 N) 来构建简单的清晰测量方案。这个解码器可以用于精确任何字段的所有残缺的恢复时间,用相同数量的测量结果加以改进。此外,从一个单词中计算出综合症可以在块长度的近线性时间进行计算。 我们还演示了这些技术在非适应组的测试,并用$(K%2 $2 N) 和$ 和$ 。