We provide a new efficient version of the backpropagation algorithm, specialized to the case where the weights of the neural network being trained are sparse. Our algorithm is general, as it applies to arbitrary (unstructured) sparsity and common layer types (e.g., convolutional or linear). We provide a fast vectorized implementation on commodity CPUs, and show that it can yield speedups in end-to-end runtime experiments, both in transfer learning using already-sparsified networks, and in training sparse networks from scratch. Thus, our results provide the first support for sparse training on commodity hardware.
翻译:我们提供了一种新的高效的回向转换算法,它专门用于正在培训的神经网络重量稀少的情况。 我们的算法是一般性的,因为它适用于任意(无结构的)宽度和普通层类型(例如,革命性或线性 ) 。 我们为商品CPU提供快速矢量化的实施,并表明它可以在端到端运行的实验中产生加速,既包括利用已经分化的网络转移学习,也包括从零开始培训稀少的网络。 因此,我们的结果为零散的商品硬件培训提供了第一种支持。