Consider two brands that want to jointly test alternate web experiences for their customers with an A/B test. Such collaborative tests are today enabled using \textit{third-party cookies}, where each brand has information on the identity of visitors to another website. With the imminent elimination of third-party cookies, such A/B tests will become untenable. We propose a two-stage experimental design, where the two brands only need to agree on high-level aggregate parameters of the experiment to test the alternate experiences. Our design respects the privacy of customers. We propose an estimater of the Average Treatment Effect (ATE), show that it is unbiased and theoretically compute its variance. Our demonstration describes how a marketer for a brand can design such an experiment and analyze the results. On real and simulated data, we show that the approach provides valid estimate of the ATE with low variance and is robust to the proportion of visitors overlapping across the brands.
翻译:考虑两个想要用 A/B 测试来共同测试客户的网络经验的品牌。 今天,这种合作测试使用\ textit{ 第三方饼干} 来进行, 每个品牌都拥有关于另一个网站访问者身份的信息。 随着第三方饼干即将消失, 这样的A/ B 测试将变得站不住脚。 我们提出一个两阶段的实验设计, 两个品牌只需商定试验的高层次综合参数来测试其他体验。 我们的设计尊重客户的隐私。 我们提出一个平均治疗效果估算器(ATE), 显示它没有偏见, 在理论上可以计算它的差异。 我们的演示描述了品牌销售者如何设计这样的实验和分析结果。 在真实和模拟的数据中, 我们显示该方法提供了对ATE的有效估计, 差异较小, 并且对跨品牌的游客比例具有很强性。