We study the question of how visual analysis can support the comparison of spatio-temporal ensemble data of liquid and gas flow in porous media. To this end, we focus on a case study, in which nine different research groups concurrently simulated the process of injecting CO2 into the subsurface. We explore different data aggregation and interactive visualization approaches to compare and analyze these nine simulations. In terms of data aggregation, one key component is the choice of similarity metrics that define the relation between the different simulations. We test different metrics and find that a fine-tuned machine-learning based metric provides the best visualization results. Based on that, we propose different visualization methods. For overviewing the data, we use dimensionality reduction methods that allow us to plot and compare the different simulations in a scatterplot. To show details about the spatio-temporal data of each individual simulation, we employ a space-time cube volume rendering. We use the resulting interactive, multi-view visual analysis tool to explore the nine simulations and also to compare them to data from experimental setups. Our main findings include new insights into ranking of simulation results with respect to experimental data, and the development of gravity fingers in simulations.


翻译:我们研究了可视化分析如何支持比较多孔介质中液体和气体流动的时空集合数据。为此,我们关注一个案例研究,在该研究中,九个不同的研究小组同时对地下注入CO2的过程进行了模拟。我们探索了不同的数据汇总和交互式可视化方法来比较和分析这九种模拟。在数据汇总方面,一个关键组件是选择相似度度量来定义不同模拟之间的关系。我们测试了不同的度量标准,并发现一个精调的基于机器学习的指标提供了最好的可视化结果。基于此,我们提出了不同的可视化方法。为了概述数据,我们使用降维方法,可以将不同的模拟以散点图形式绘制和比较。为了展示每个单独模拟的时空数据细节,我们采用了空时立方体体渲染。我们使用生成的交互式、多视角可视化分析工具来探索这九种模拟,并将它们与实验数据进行比较。我们的主要发现包括对模拟结果与实验数据排名的新见解,以及模拟中重力指数的发展。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
【干货书】深度学习数学:理解神经网络,347页pdf
专知会员服务
262+阅读 · 2022年7月3日
【2022新书】数据可视化手册,443页pdf
专知会员服务
194+阅读 · 2022年5月7日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【视频】几何数据嵌入表示学习,74页ppt
专知会员服务
33+阅读 · 2020年7月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
动手实现推荐系统评价指标
机器学习与推荐算法
1+阅读 · 2022年6月1日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
0+阅读 · 2023年5月10日
VIP会员
相关VIP内容
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
【干货书】深度学习数学:理解神经网络,347页pdf
专知会员服务
262+阅读 · 2022年7月3日
【2022新书】数据可视化手册,443页pdf
专知会员服务
194+阅读 · 2022年5月7日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【视频】几何数据嵌入表示学习,74页ppt
专知会员服务
33+阅读 · 2020年7月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
动手实现推荐系统评价指标
机器学习与推荐算法
1+阅读 · 2022年6月1日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员