The goal of this paper is to exhibit and analyze an algorithm that takes a given closed orientable hyperbolic surface and outputs an explicit Dirichlet domain. The input is a fundamental polygon with side pairings. While grounded in topological considerations, the algorithm makes key use of the geometry of the surface. We introduce data structures that reflect this interplay between geometry and topology and show that the algorithm finishes in polynomial time, in terms of the initial perimeter and the genus of the surface.
翻译:本文的目的是展示和分析一种算法,该算法采用一个特定封闭的、可定向的双曲表面和输出一个明确的 Dirichlet 域。 输入是一个带有侧配对的基本多边形。 该算法在基于地形学的考虑的基础上, 关键地使用地表的几何。 我们引入了反映几何和地形学之间相互作用的数据结构, 并显示算法在多元时间、 最初的周边和地表的基因方面完成了。