Dynamical networks are versatile models that can describe a variety of behaviours such as synchronisation and feedback. However, applying these models in real world contexts is difficult as prior information pertaining to the connectivity structure or local dynamics is often unknown and must be inferred from time series observations of network states. Additionally, the influence of coupling interactions between nodes further complicates the isolation of local node dynamics. Given the architectural similarities between dynamical networks and recurrent neural networks (RNN), we propose a network inference method based on the backpropagation through time (BPTT) algorithm commonly used to train recurrent neural networks. This method aims to simultaneously infer both the connectivity structure and local node dynamics purely from observation of node states. An approximation of local node dynamics is first constructed using a neural network. This is alternated with an adapted BPTT algorithm to regress corresponding network weights by minimising prediction errors of the dynamical network based on the previously constructed local models until convergence is achieved. This method was found to be succesful in identifying the connectivity structure for coupled networks of Lorenz, Chua and FitzHugh-Nagumo oscillators. Freerun prediction performance with the resulting local models and weights was found to be comparable to the true system with noisy initial conditions. The method is also extended to non-conventional network couplings such as asymmetric negative coupling.


翻译:动态网络是多功能的模型,可以描述各种行为,例如同步和反馈。然而,在现实世界背景下应用这些模型很困难,因为以前有关连接结构或地方动态的信息往往不为人知,必须从网络状态的时间序列观测中推断出来。此外,节点之间混合互动的影响进一步使本地节点动态的孤立性复杂化。鉴于动态网络和经常性神经网络(RNN)之间的结构相似性,我们提议一种基于时空反反向分析(BPTTT)算法的网络推论方法,通常用于培训经常性神经网络。这种方法旨在从对节点状态的观测中同时推断连接结构和本地节点动态。当地节点动态的近似首先使用神经网络构建。这与经过调整的BPTT算法相交替,通过尽量减少基于先前构建的本地模型的动态网络的预测错误,直到实现趋同。在确定Lorenz、Chua和FitzHIH-Nagumo网络连接网络的连接性结构结构结构时,这一方法被认为很困难。通过对当地周期性网络进行不相比重的模拟的预测,因此,因此,可以对地对地进行精确的网络进行精确的预测。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员