Serverless computing is a popular cloud computing paradigm that frees developers from server management. Function-as-a-Service (FaaS) is the most popular implementation of serverless computing, representing applications as event-driven and stateless functions. However, existing studies report that functions of FaaS applications severely suffer from cold-start latency. In this paper, we propose an approach namely FaaSLight to accelerating the cold start for FaaS applications through application-level optimization. We first conduct a measurement study to investigate the possible root cause of the cold start problem of FaaS. The result shows that application code loading latency is a significant overhead. Therefore, loading only indispensable code from FaaS applications can be an adequate solution. Based on this insight, we identify code related to application functionalities by constructing the function-level call graph, and separate other code (i.e., optional code) from FaaS applications. The separated optional code can be loaded on demand to avoid the inaccurate identification of indispensable code causing application failure. In particular, a key principle guiding the design of FaaSLight is inherently general, i.e., platform- and language-agnostic. The evaluation results on real-world FaaS applications show that FaaSLight can significantly reduce the code loading latency (up to 78.95%, 28.78% on average), thereby reducing the cold-start latency. As a result, the total response latency of functions can be decreased by up to 42.05% (19.21% on average). Compared with the state-of-the-art, FaaSLight achieves a 21.25X improvement in reducing the average total response latency.


翻译:无服务器计算是一种广受欢迎的云计算模式,让开发者摆脱服务器管理。 函数- as- a- service (FaaS) 是最受欢迎的无服务器计算实施方式, 代表着由事件驱动和无国籍功能的应用程序。 然而, 现有的研究表明, FaaS 应用程序的功能严重受冷启动潜伏的影响。 在本文中, 我们提议了一种方法, 即 Faas- service (Faas- a- Service) 加速FaaS 应用程序的冷启动速度。 我们首先进行测量研究, 以调查FaaS 冷启动问题的可能根源。 结果显示, 应用程序的安装代码加固值是一个巨大的间接间接。 因此, 从这个洞察看, 我们通过构建功能级调音调图和另外的代码( 即选用代码) 来识别与应用程序相关的代码( ) 。 分离的选用代码可以按需求来避免错误地识别导致应用失败的代码。 特别是, 指导 Faaslistealight( i. e. 78) 平台- sal- real- real- real- real- real- revial- reviewal- pal- pal- pal- pal- pal- pal- pal- reviewal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- devial- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- deal- pal- deal- deal- pal- pal- pal- pal- pal- pal- pal- pal-lemental- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal- pal-

1
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月26日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
Arxiv
12+阅读 · 2018年9月15日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员