In this paper, we consider an energy-conserving continuous Galerkin discretization of the Gross-Pitaevskii equation with a magnetic trapping potential and a stirring potential for angular momentum rotation. The discretization is based on finite elements in space and time and allows for arbitrary polynomial orders. It was first analyzed in [O. Karakashian, C. Makridakis; SIAM J. Numer. Anal. 36(6):1779-1807, 1999] in the absence of potential terms and corresponding a priori error estimates were derived in 2D. In this work we revisit the approach in the generalized setting of the Gross-Pitaevskii equation with rotation and we prove uniform $L^\infty$-bounds for the corresponding numerical approximations in 2D and 3D without coupling conditions between the spatial mesh size and the time step size. With this result at hand, we are in particular able to extend the previous error estimates to the 3D setting while avoiding artificial CFL conditions.
翻译:在本文中,我们考虑Gross-Pitaevskii等方程式的节能连续Galerkin分解,具有磁捕捉潜力和角动力旋转的诱人潜力。分解以空间和时间的有限元素为基础,并允许任意的多式排列。它首先在[O.Karakashian,C.Makridakis;SIAM J.Numer.Anal. 36(6):1779-1807,1999年]中进行了分析,因为没有潜在条件,2D中也得出了相应的先验误差估计。 在这项工作中,我们重新审视了Gros-Pitaevskii等方程式与旋转的普遍设置方法,我们证明2D和3D的相应数字近似值以统一的$-infty$-ld-unit-unit-unit-unit-unit-unit-unit-unit-t-t-nocremements,而没有将空间网格尺寸和时序尺寸之间的条件混合。我们尤其能够将以前的错误估计扩大到3D,同时避免人为CFLFL条件。