Videos shot by laymen using hand-held cameras contain undesirable shaky motion. Estimating the global motion between successive frames, in a manner not influenced by moving objects, is central to many video stabilization techniques, but poses significant challenges. A large body of work uses 2D affine transformations or homography for the global motion. However, in this work, we introduce a more general representation scheme, which adapts any existing optical flow network to ignore the moving objects and obtain a spatially smooth approximation of the global motion between video frames. We achieve this by a knowledge distillation approach, where we first introduce a low pass filter module into the optical flow network to constrain the predicted optical flow to be spatially smooth. This becomes our student network, named as \textsc{GlobalFlowNet}. Then, using the original optical flow network as the teacher network, we train the student network using a robust loss function. Given a trained \textsc{GlobalFlowNet}, we stabilize videos using a two stage process. In the first stage, we correct the instability in affine parameters using a quadratic programming approach constrained by a user-specified cropping limit to control loss of field of view. In the second stage, we stabilize the video further by smoothing global motion parameters, expressed using a small number of discrete cosine transform coefficients. In extensive experiments on a variety of different videos, our technique outperforms state of the art techniques in terms of subjective quality and different quantitative measures of video stability. The source code is publicly available at \href{https://github.com/GlobalFlowNet/GlobalFlowNet}{https://github.com/GlobalFlowNet/GlobalFlowNet}
翻译:使用手持相机拍摄的外行人拍摄的视频 由手持相机拍摄的视频 { 包含不可取的扭曲运动。 我们通过一种知识蒸馏方法来实现这一点, 我们首先在光学流网络中引入一个低传球过滤器模块, 以不受移动对象影响的方式限制预测的光学流, 这是许多视频稳定技术的核心, 但也带来了巨大的挑战。 大量的工作使用 2D faffine 变换或同质法来进行全球运动。 然而, 在这项工作中, 我们引入了一个更通用的演示方案, 使现有的光学流网络能够忽略移动对象, 并获得视频框架之间的空间平稳近距离。 我们通过一种知识蒸馏方法实现了这一点, 我们首先在光学流网络中引入了一个低传球过滤器, 以限制预测的光学流流流流流, 这成了我们的学生网络网络, 命名为\ textsc{GlobalFNet}。 然后, 我们用原始的光学流网络, 我们用一个稳定的流流流流/全球流流流流的流调调控工具, 进一步控制。