An approach is introduced for comparing the estimated states of stochastic compartmental models for an epidemic or biological process with analytically obtained solutions from the corresponding system of ordinary differential equations (ODEs). Positive integer valued samples from a stochastic model are generated numerically at discrete time intervals using either the Reed-Frost chain Binomial or Gillespie algorithm. The simulated distribution of realisations is compared with an exact solution obtained analytically from the ODE model. Using this novel methodology this work demonstrates it is feasible to check that the realisations from the stochastic compartmental model adhere to the ODE model they represent. There is no requirement for the model to be in any particular state or limit. These techniques are developed using the stochastic compartmental model for a susceptible-infected-recovered (SIR) epidemic process. The Lotka-Volterra model is then used as an example of the generality of the principles developed here. This approach presents a way of testing/benchmarking the numerical solutions of stochastic compartmental models, e.g. using unit tests, to check that the computer code along with its corresponding algorithm adheres to the underlying ODE model.
翻译:采用一种方法,将流行病或生物过程的随机隔间模型的估计状态与从相应的普通差异方程式系统中分析获得的解决方案进行比较。通过Reed-Frost链串Binomial 或Gillespie算法,从随机模型中生成的正整整数值样本在离散时间间隔内以数字方式生成。模拟的实现分布与从ODE模型中分析获得的精确解决方案相比较。使用这种新颖的方法,这项工作表明可以检查从随机隔间模型中获得的结果是否符合它们所代表的模型。没有要求该模型在任何特定状态或限度内生成正整数整数。这些技术是使用易感受感染(SIR)流行病过程的随机整形间隔模型开发的。然后将Lotka-Volterra模型用作此处所制定原则的一般性范例。这一方法展示了一种测试/标记随机隔间模型数字解决方案的方法,例如使用单元测试,以检查该模型的计算机代码及其对应的算算法。