Methods allowing the synthesis of realistic cell shapes could help generate training data sets to improve cell tracking and segmentation in biomedical images. Deep generative models for cell shape synthesis require a light-weight and flexible representation of the cell shape. However, commonly used voxel-based representations are unsuitable for high-resolution shape synthesis, and polygon meshes have limitations when modeling topology changes such as cell growth or mitosis. In this work, we propose to use level sets of signed distance functions (SDFs) to represent cell shapes. We optimize a neural network as an implicit neural representation of the SDF value at any point in a 3D+time domain. The model is conditioned on a latent code, thus allowing the synthesis of new and unseen shape sequences. We validate our approach quantitatively and qualitatively on C. elegans cells that grow and divide, and lung cancer cells with growing complex filopodial protrusions. Our results show that shape descriptors of synthetic cells resemble those of real cells, and that our model is able to generate topologically plausible sequences of complex cell shapes in 3D+time.
翻译:允许合成现实细胞形状的方法可以帮助生成培训数据集,以改善生物医学图像中的细胞跟踪和分化。细胞形状合成的深基因模型要求对细胞形状进行轻量和灵活的表达。然而,常用的 voxel 表示方式不适合高分辨率形状合成,而多边形 meshes 在模拟细胞生长或分裂等地形变化时有局限性。在这项工作中,我们提议使用已签字的距离函数(SDFs)的层次组来代表细胞形状。我们优化神经网络,作为3D+时间域中任何一点SDF值的隐含神经表示。该模型以潜在代码为条件,从而允许对新的和看不见形状序列进行合成。我们验证了我们在C. 生长和分离的雌巢细胞以及生长和分离的复杂纤维质的肺癌细胞上的做法。我们的结果显示,合成细胞的形状描述器与真实细胞的形状相似,我们的模型能够在3D+时间生成复杂细胞形状的表面合理序列。