Incorporating unstructured data into physical models is a challenging problem that is emerging in data assimilation. Traditional approaches focus on well-defined observation operators whose functional forms are typically assumed to be known. This prevents these methods from achieving a consistent model-data synthesis in configurations where the mapping from data-space to model-space is unknown. To address these shortcomings, in this paper we develop a physics-informed dynamical variational autoencoder ($\Phi$-DVAE) for embedding diverse data streams into time-evolving physical systems described by differential equations. Our approach combines a standard (possibly nonlinear) filter for the latent state-space model and a VAE, to embed the unstructured data stream into the latent dynamical system. A variational Bayesian framework is used for the joint estimation of the embedding, latent states, and unknown system parameters. To demonstrate the method, we look at three examples: video datasets generated by the advection and Korteweg-de Vries partial differential equations, and a velocity field generated by the Lorenz-63 system. Comparisons with relevant baselines show that the $\Phi$-DVAE provides a data efficient dynamics encoding methodology that is competitive with standard approaches, with the added benefit of incorporating a physically interpretable latent space.
翻译:将非结构化数据纳入物理模型是数据同化中正在出现的一个具有挑战性的问题。传统方法侧重于定义明确的观测操作员,其功能形式通常被认为是已知的。这阻碍了这些方法在从数据空间到模型空间的映射未知的配置中实现一致的模型数据合成。为了解决这些缺陷,我们在本文件中开发了一个物理学知情的动态自动变换器(Phi$-DVAE),用于将不同数据流嵌入由差异方程式描述的时间变化物理系统。我们的方法将隐形状态空间模型和VAE的标准(可能的非线性)过滤器结合起来,将非结构化数据流嵌入潜在的动态系统。一个变异贝叶框架用于联合估计嵌入、潜伏状态和未知系统参数。为了证明这一方法,我们以三个实例为例:调和Korteweg-de 部分差异方程式生成的视频数据集,以及Lorenz-63系统生成的高速字段。与相关的空间动态动态数据流的竞争性解释方法相比,一个与一个具有竞争力的基线化的模型,提供了一种具有竞争力的空间变现式的模型,从而提供了一种可提供空间动态的物理数据转换的虚拟数据。