Model fairness is an essential element for Trustworthy AI. While many techniques for model fairness have been proposed, most of them assume that the training and deployment data distributions are identical, which is often not true in practice. In particular, when the bias between labels and sensitive groups changes, the fairness of the trained model is directly influenced and can worsen. We make two contributions for solving this problem. First, we analytically show that existing in-processing fair algorithms have fundamental limits in accuracy and group fairness. We introduce the notion of correlation shifts, which can explicitly capture the change of the above bias. Second, we propose a novel pre-processing step that samples the input data to reduce correlation shifts and thus enables the in-processing approaches to overcome their limitations. We formulate an optimization problem for adjusting the data ratio among labels and sensitive groups to reflect the shifted correlation. A key benefit of our approach lies in decoupling the roles of pre- and in-processing approaches: correlation adjustment via pre-processing and unfairness mitigation on the processed data via in-processing. Experiments show that our framework effectively improves existing in-processing fair algorithms w.r.t. accuracy and fairness, both on synthetic and real datasets.
翻译:模型公平性是值得信赖的大赦国际的一个基本要素。虽然提出了许多关于模型公平性的技术,但大多数技术都假定培训和部署数据分布是相同的,在实践中往往不是这样。特别是,当标签和敏感群体之间的偏差发生改变时,经过培训的模式的公平性会受到直接影响,并可能恶化。我们为解决这一问题作出了两项贡献。首先,我们分析表明,现有处理中的公平算法在准确性和群体公平性方面有着根本的局限性。我们引入了相关转换的概念,这可以明确反映上述偏差的变化。第二,我们提出了一个新的预处理步骤,即对输入数据进行取样,以减少相关变化,从而使处理中的方法能够克服其局限性。我们为调整标签和敏感群体之间的数据比率而设计了一个优化问题,以反映变化的相互关系。我们的方法的一个重要好处在于将预处理方法和处理方法的作用区分开来:通过预处理和通过处理减少不公平性来对处理中的数据进行相关调整。实验表明,我们的框架有效地改进了处理中的公平算法中的准确性和公正性。