Infant motion analysis is a topic with critical importance in early childhood development studies. However, while the applications of human pose estimation have become more and more broad, models trained on large-scale adult pose datasets are barely successful in estimating infant poses due to the significant differences in their body ratio and the versatility of their poses. Moreover, the privacy and security considerations hinder the availability of adequate infant pose data required for training of a robust model from scratch. To address this problem, this paper presents (1) building and publicly releasing a hybrid synthetic and real infant pose (SyRIP) dataset with small yet diverse real infant images as well as generated synthetic infant poses and (2) a multi-stage invariant representation learning strategy that could transfer the knowledge from the adjacent domains of adult poses and synthetic infant images into our fine-tuned domain-adapted infant pose (FiDIP) estimation model. In our ablation study, with identical network structure, models trained on SyRIP dataset show noticeable improvement over the ones trained on the only other public infant pose datasets. Integrated with pose estimation backbone networks with varying complexity, FiDIP performs consistently better than the fine-tuned versions of those models. One of our best infant pose estimation performers on the state-of-the-art DarkPose model shows mean average precision (mAP) of 93.6.


翻译:婴儿运动分析是幼儿早期发育研究中一个至关重要的专题,然而,虽然人类构成估计的应用越来越广泛,但关于大规模成人构成数据集的培训模型几乎无法成功地估计婴儿构成数据集,因为其身体比重差异很大,而且其容貌多才多才多艺;此外,隐私和安全方面的考虑妨碍提供婴儿从头到尾训练稳健模型所需的适当数据;为解决这一问题,本文件介绍了:(1) 建立并公开发布混合合成和真实婴儿构成(SyRIP)数据集,该数据集包含小但多样的真实婴儿图像以及生成的合成婴儿成像;(2) 多阶段演化说明学习战略,能够将来自邻近成人成形和合成婴儿图像领域的知识转移到我们精心调整的域对称婴儿构成模型(FiDIP)估计模型。 在我们的实验室研究中,以相同的网络结构对SyRIP数据集进行了培训,该模型显示比其他公共婴儿构成数据集所培训的数据集有明显改进。 结合复杂程度不同的估计主干网,FiDIP对婴儿的精确度和合成婴儿图像进行了持续改进。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
7+阅读 · 2020年10月9日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员