We couple the L1 discretization for Caputo derivative in time with spectral Galerkin method in space to devise a scheme that solves quasilinear subdiffusion equations. Both the diffusivity and the source are allowed to be nonlinear functions of the solution. We prove method's stability and convergence with spectral accuracy in space. The temporal order depends on solution's regularity in time. Further, we support our results with numerical simulations that utilize parallelism for spatial discretization. Moreover, as a side result we find asymptotic exact values of error constants along with their remainders for discretizations of Caputo derivative and fractional integrals. These constants are the smallest possible which improves the previously established results from the literature.
翻译:我们将卡普托衍生物的L1离散和空间中的光谱加列金方法同时结合,以便设计出一个解决准线性子扩散方程式的方案。 允许 diffusiversity 和 源为解决方案的非线性函数。 我们证明方法的稳定性和与空间光谱精度的趋同性。 时间顺序取决于解决方案的规律性。 此外, 我们用数字模拟来支持我们的结果, 利用平行空间离散法。 此外, 作为副结果, 我们发现误差常数及其剩余值与卡普托衍生物和分数集分集体分解的差分化的剩余值一样, 这些常数是尽可能最小的, 能改善文献先前确定的结果 。