A data-driven framework is presented, that enables the prediction of quantities, either observations or parameters, given sufficient partial data. The framework is illustrated via a computational model of the deposition of Cu in a Chemical Vapor Deposition (CVD) reactor, where the reactor pressure, the deposition temperature and feed mass flow rate are important process parameters that determine the outcome of the process. The sampled observations are high-dimensional vectors containing the outputs of a detailed CFD steady-state model of the process, i.e. the values of velocity, pressure, temperature, and species mass fractions at each point in the discretization. A machine learning workflow is presented, able to predict out-of-sample (a) observations (e.g. mass fraction in the reactor) given process parameters (e.g. inlet temperature); (b) process parameters given observation data; and (c) partial observations (e.g. temperature in the reactor) given other partial observations (e.g. mass fraction in the reactor). The proposed workflow relies on the manifold learning schemes Diffusion Maps and the associated Geometric Harmonics. Diffusion Maps is used for discovering a reduced representation of the available data, and Geometric Harmonics for extending functions defined on the manifold. In our work a special use case of Geometric Harmonics is formulated and implemented, which we call Double Diffusion Maps, to map from the reduced representation back to (partial) observations and process parameters. A comparison of our manifold learning scheme to the traditional Gappy-POD approach is provided: ours can be thought of as a "Gappy DMAP" approach. The presented methodology is easily transferable to application domains beyond reactor engineering.
翻译:提供数据驱动框架,以便能够根据足够局部的数据预测数量,包括观测或参数; 框架通过化学蒸汽沉积反应堆(CVD) Cu沉积的计算模型加以说明,其中反应堆压力、沉积温度和进料质量流速是决定过程结果的重要过程参数; 抽样观测是高维矢量,包含该过程详细CFD稳定状态模型的产出,即离散时每个点的直径参数、压力、温度和物种质量分数的值; 提供了机器学习流程,能够预测Cu沉积在化学蒸汽沉积堆堆堆堆堆堆堆中的沉积(CVD)反应堆堆堆堆中的沉积(CVD),其中反应堆压力、沉积温度和进量流速流速率是用来确定数据流化过程的缩放法; 将数据流化法用于发现“我们用于测量数据流化的磁力阵列法; 将数据流化法用于测量数据流化法; 将数据流化法用于“我们用于测量数据流流流法的缩法; 将数据流化法用于诊断法的计算; 将数据法用于我们用于诊断数据流化法的计算法的伸缩化法; 将数据法用于诊断法的缩法的伸伸伸伸伸伸伸伸缩法用于用于用于用于用于发现“我们用于用于用于诊断数据法。