We propose a novel machine learning method based on differentiable vortex particles to infer and predict fluid dynamics from a single video. The key design of our system is a particle-based latent space to encapsulate the hidden, Lagrangian vortical evolution underpinning the observable, Eulerian flow phenomena. We devise a novel differentiable vortex particle system in conjunction with their learnable, vortex-to-velocity dynamics mapping to effectively capture and represent the complex flow features in a reduced space. We further design an end-to-end training pipeline to directly learn and synthesize simulators from data, that can reliably deliver future video rollouts based on limited observation. The value of our method is twofold: first, our learned simulator enables the inference of hidden physics quantities (e.g. velocity field) purely from visual observation, to be used for motion analysis; secondly, it also supports future prediction, constructing the input video's sequel along with its future dynamics evolution. We demonstrate our method's efficacy by comparing quantitatively and qualitatively with a range of existing methods on both synthetic and real-world videos, displaying improved data correspondence, visual plausibility, and physical integrity.
翻译:我们提出一种新的机器学习方法,以不同的旋涡粒子为基础,从一个视频中推断和预测流体动态。我们系统的关键设计是以粒子为基础的潜伏空间,以封装隐藏的Lagrangian vorortical演化,支持观察的Eulerian流现象。我们设计了一个新的不同的旋涡体粒子系统,结合其可学习的、涡流到速度动态绘图,以有效捕捉并代表空间缩小中的复杂的流动特征。我们进一步设计了终端到终端的培训管道,直接从数据中学习和合成模拟器,这可以可靠地提供基于有限观察的未来视频展出。我们的方法具有双重价值:首先,我们所学的模拟器可以推断隐藏的物理数量(例如速度场),仅从视觉观测中推断,用于运动分析;其次,它也支持未来预测,构建输入视频的后继效应及其未来的动态演变。我们通过将定量和定性与合成和现实世界视频上现有的一系列完整性方法进行比较来展示我们的方法的功效。我们的方法的价值是双重的:首先,我们所学的模拟能够显示改进的数据和视觉对应性。