In p-median location interdiction the aim is to find a subset of edges in a graph, such that the objective value of the p-median problem in the same graph without the selected edges is as large as possible. We prove that this problem is NP-hard even on acyclic graphs. Restricting the problem to trees with unit lengths on the edges, unit interdiction costs, and a single edge interdiction, we provide an algorithm which solves the problem in polynomial time. Furthermore, we investigate path graphs with unit and arbitrary lengths. For the former case, we present an algorithm, where multiple edges can get interdicted. Furthermore, for the latter case, we present a method to compute an optimal solution for one interdiction step which can also be extended to multiple interdicted edges.
翻译:在p- 中间位置阻截中, 目的是在图表中找到一组边缘, 这样在没有选定边缘的情况下, 同一图表中, p- 中间问题的客观价值会尽可能大。 我们证明这个问题即使在环形图中, 也很难解决。 将问题限制在边缘有单位长度的树木上, 单位阻截成本, 和单一边缘阻截, 我们提供一种算法, 解决多面时间的问题 。 此外, 我们用单位长度和任意长度来调查路径图 。 对于前一种情况, 我们提出了一个算法, 可以截断多个边缘。 此外, 对于后一种情况, 我们提出一种方法来计算一个阻截步骤的最佳解决方案, 它可以扩大到多个被截断的边缘 。