Let $(X_t)$ be a reflected diffusion process in a bounded convex domain in $\mathbb R^d$, solving the stochastic differential equation $$dX_t = \nabla f(X_t) dt + \sqrt{2f (X_t)} dW_t, ~t \ge 0,$$ with $W_t$ a $d$-dimensional Brownian motion. The data $X_0, X_D, \dots, X_{ND}$ consist of discrete measurements and the time interval $D$ between consecutive observations is fixed so that one cannot `zoom' into the observed path of the process. The goal is to solve the non-linear inverse problem of inferring the diffusivity $f$ and the associated transition operator $P_{t,f}$. We prove injectivity theorems and stability estimates for the maps $f \mapsto P_{t,f} \mapsto P_{D,f}, t<D$. Using these estimates we then establish the statistical consistency of a class of Bayesian algorithms based on Gaussian process priors for the infinite-dimensional parameter $f$, and show optimality of some of the convergence rates obtained. We discuss an underlying relationship between `fast convergence' and the `hot spots' conjecture from spectral geometry.
翻译:$( X_ t) $( 美元) 是一个折叠的 convex 域的反射进程, 以$\ mathbb R $( 美元) 美元( 美元) 美元( 美元) 来解析分解方程和连续观测之间的时间间隔 $dX_ t=\ t=\ nabla f( ( X_ t) dt) +\ sqrt{ 2f ( X_ t) dW_ t, ~ t\ ge 0, 美元( 美元) dW_ 美元, 美元( 美元) 维度( 美元) 布朗运动 。 数据x_ 0, X_ 美元( 美元) 美元( 美元) 包含离散测量和连续观测之间的时间间隔 $D 美元( 美元), 这样一个人无法“ zoom” 进入所观察到的进程 。 目标是解决非线性的问题, 将 difff $ ( 美元) 和 相关过渡操作员 $ ( $ ( 美元) 美元) 。 我们证明地图的直径( $( ) = ( ) 美元) ( ) 直径) 直观) 的趋一致( 和 平流) 的排序( 平流) 平流和 平流( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (