This manuscript makes two contributions to the field of change-point detection. In a generalchange-point setting, we provide a generic algorithm for aggregating local homogeneity testsinto an estimator of change-points in a time series. Interestingly, we establish that the errorrates of the collection of tests directly translate into detection properties of the change-pointestimator. This generic scheme is then applied to various problems including covariance change-point detection, nonparametric change-point detection and sparse multivariate mean change-point detection. For the latter, we derive minimax optimal rates that are adaptive to theunknown sparsity and to the distance between change-points when the noise is Gaussian. Forsub-Gaussian noise, we introduce a variant that is optimal in almost all sparsity regimes.
翻译:这本手稿对改变点检测领域做出了两项贡献。 在一般变化点设置中, 我们提供了一种通用算法, 将本地同质测试汇总到一个时间序列中变化点的估测器中。 有趣的是, 我们确定, 采集测试的错误率直接转化为变化点测量器的检测特性。 这个通用方法随后应用于各种问题, 包括常态变化点检测、 非对称变化点检测和稀有多变平均值检测。 对于后者, 我们得出微缩最佳率, 以适应未知的聚度和噪音是高斯时变化点之间的距离。 对于苏比- 高西 噪音, 我们引入了一种在几乎所有气候系统都最优的变量 。