This paper presents an algorithm to solve the Soft k-Means problem globally. Unlike Fuzzy c-Means, Soft k-Means (SkM) has a matrix factorization-type objective and has been shown to have a close relation with the popular probability decomposition-type clustering methods, e.g., Left Stochastic Clustering (LSC). Though some work has been done for solving the Soft k-Means problem, they usually use an alternating minimization scheme or the projected gradient descent method, which cannot guarantee global optimality since the non-convexity of SkM. In this paper, we present a sufficient condition for a feasible solution of Soft k-Means problem to be globally optimal and show the output of the proposed algorithm satisfies it. Moreover, for the Soft k-Means problem, we provide interesting discussions on stability, solutions non-uniqueness, and connection with LSC. Then, a new model, named Minimal Volume Soft k-Means (MVSkM), is proposed to address the solutions non-uniqueness issue. Finally, experimental results support our theoretical results.


翻译:本文展示了解决全球软体 k- Means 问题的算法。 与 Fuzzy c- Means 不同的是, Soft k- Means (SkM) 与 Fuzzy c- Means 不同, 软体 k- Means (SkM) 拥有一个矩阵因子化类型目标, 并且已经证明与流行的概率分解类型组群方法( 例如, Left Stochastecistic 群集( LSC) ) 有着密切的关系。 尽管为解决软体K- Means 问题做了一些工作, 但是它们通常使用一种交替最小化计划或预测的渐变下降方法, 这种方法无法保证自SkM的非安全性以来全球的最佳性。 在本文中, 我们为软体型 k- Means 问题的可行解决方案提供了一个充分的条件, 从而实现全球最佳化, 并展示了拟议算法的输出。 此外, 对于软体群集问题, 我们提供了关于稳定性、 解决方案不独特性解决方案和与 LSC 的关联的有趣讨论。 然后, 提出了一个新的模型, 名为 Minimal imal immeral sium Soft Soft k- Means k- Means k- Means (MVSk- Means (M) 的模型,, 以解决) 以解决支持我们的理论结果。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月9日
Arxiv
0+阅读 · 2023年2月6日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员