Recent years have witnessed tremendous interest in deep learning on graph-structured data. Due to the high cost of collecting labeled graph-structured data, domain adaptation is important to supervised graph learning tasks with limited samples. However, current graph domain adaptation methods are generally adopted from traditional domain adaptation tasks, and the properties of graph-structured data are not well utilized. For example, the observed social networks on different platforms are controlled not only by the different crowd or communities but also by the domain-specific policies and the background noise. Based on these properties in graph-structured data, we first assume that the graph-structured data generation process is controlled by three independent types of latent variables, i.e., the semantic latent variables, the domain latent variables, and the random latent variables. Based on this assumption, we propose a disentanglement-based unsupervised domain adaptation method for the graph-structured data, which applies variational graph auto-encoders to recover these latent variables and disentangles them via three supervised learning modules. Extensive experimental results on two real-world datasets in the graph classification task reveal that our method not only significantly outperforms the traditional domain adaptation methods and the disentangled-based domain adaptation methods but also outperforms the state-of-the-art graph domain adaptation algorithms.


翻译:近些年来,人们非常关心对图表结构数据进行深层次学习。由于收集标记的图表结构数据的成本很高,因此对有限样本的图表学习任务来说,领域调整非常重要。然而,目前图表领域适应方法一般是从传统领域适应任务中采用的,而图形结构数据的性质则没有得到充分利用。例如,不同平台上观测到的社会网络不仅由不同的人群或群体控制,而且还由特定领域的政策和背景噪音控制。根据图表结构数据中的这些属性,我们首先假设图形结构数据生成过程由三种独立的潜在变量(即:语义潜在变量、领域潜在变量和随机潜在变量)来控制。基于这一假设,我们建议对图表结构数据采用一种不相干、不统一的域适应方法,即应用变异图形自动摄集器来恢复这些潜在变量,并通过三个有监督的学习模块将其分解。在图形分类任务中的两种真实世界数据集中,即语义潜在变量、领域潜在变量和随机潜在变量加以控制。基于这一假设,我们提出的图表结构结构数据调整方法不仅明显地超越了区域适应方法,而且远比区域系统演算法的调整方法更形。

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员