Yang et al. (2016) proved that the symmetric random walk Metropolis--Hastings algorithm for Bayesian variable selection is rapidly mixing under mild high-dimensional assumptions. In this work, we introduce a novel Metropolis--Hastings algorithm, which still proposes new states via add-delete-swap moves but has a much faster mixing time independent of the number of covariates. The key idea is to use a locally informed proposal scheme with bounded weights. Motivated by the theoretical analysis of our algorithm, we further propose a method called "two-stage drift condition" for studying convergence rates of Markov chains on general state spaces. Simulation studies show that the new algorithm can efficiently explore the posterior distribution under various settings. A real data example is also provided, where five genetic variants associated with cup-to-disk ratio are identified.
翻译:Yang等人(2016年)证明,用于Bayesian变量选择的对称随机散射大都会-哈斯廷算法在温和高维假设下正在迅速混合。在这项工作中,我们引入了新型大都会-哈斯廷算法,该算法仍然通过添加电磁-斯瓦普移动提出新的状态,但与共变数无关,混合时间要快得多。关键的想法是使用一个带有约束重量的本地知情建议方案。受我们算法理论分析的启发,我们进一步提出了一种名为“两阶段漂移条件”的方法,用于研究一般状态空间Markov链的趋同率。模拟研究表明,新的算法可以有效探索不同环境中的外表分布。还提供了一个真实的数据实例,其中确定了五个与杯对立比相关的遗传变量。