The conditional gradient method (CGM) is widely used in large-scale sparse convex optimization, having a low per iteration computational cost for structured sparse regularizers and a greedy approach to collecting nonzeros. We explore the sparsity acquiring properties of a general penalized CGM (P-CGM) for convex regularizers and a reweighted penalized CGM (RP-CGM) for nonconvex regularizers, replacing the usual convex constraints with gauge-inspired penalties. This generalization does not increase the per-iteration complexity noticeably. Without assuming bounded iterates or using line search, we show $O(1/t)$ convergence of the gap of each subproblem, which measures distance to a stationary point. We couple this with a screening rule which is safe in the convex case, converging to the true support at a rate $O(1/(\delta^2))$ where $\delta \geq 0$ measures how close the problem is to degeneracy. In the nonconvex case the screening rule converges to the true support in a finite number of iterations, but is not necessarily safe in the intermediate iterates. In our experiments, we verify the consistency of the method and adjust the aggressiveness of the screening rule by tuning the concavity of the regularizer.


翻译:有条件的梯度法(CGM)被广泛用于大规模稀疏的混凝土优化,对于结构性稀疏的正规化者来说,每迭代计算成本较低,而对于收集非零度则采用贪婪的方法。我们探索的是,对于混凝土的正规化者来说,获得普遍受罚的CGM(P-CGM)特性的宽度,对于非混凝土的正规化者来说,则获得重新加权的受罚的CGM(RP-CGM)特性的宽度,用受测量激励的罚款取代通常的康氏限制。这种普遍化不会明显增加每升一次的复杂度。在不承担受约束的迭代或使用线搜索的情况下,我们显示每个子问题的差距(1美元/t)的趋近于一个固定点。我们把它与一个在混凝固的案例中很安全的筛选规则结合起来,在一种按 $O(1/(\) delta) 和geq 0. 0. 美元 衡量问题是如何接近解问题的精确性。在非凝固性的情况下, 筛选规则与我们定期的精确性测试的精确性 。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
一文搞懂反向传播
机器学习与推荐算法
18+阅读 · 2020年3月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月3日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关VIP内容
相关资讯
一文搞懂反向传播
机器学习与推荐算法
18+阅读 · 2020年3月12日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员