In this work we address the challenging case of answering count queries in web search, such as ``number of songs by John Lennon''. Prior methods merely answer these with a single, and sometimes puzzling number or return a ranked list of text snippets with different numbers. This paper proposes a methodology for answering count queries with inference, contextualization and explanatory evidence. Unlike previous systems, our method infers final answers from multiple observations, supports semantic qualifiers for the counts, and provides evidence by enumerating representative instances. Experiments with a wide variety of queries, including existing benchmark show the benefits of our method, and the influence of specific parameter settings. Our code, data and an interactive system demonstration are publicly available at https://github.com/ghoshs/CoQEx and https://nlcounqer.mpi-inf.mpg.de/.
翻译:在这项工作中,我们处理在网上搜索中回答计数询问这一具有挑战性的个案,例如John Lennon'的“歌曲数”。先前的方法只是用一个单数回答,有时是模糊数字,或者返回一个有不同数字的排位的文本片子清单。本文建议用推理、背景化和解释性证据回答计数询问的方法。与以往的系统不同,我们的方法从多重观察中推断出最后答案,支持对计数的语义限定,并通过列举有代表性的例子提供证据。包括现有基准在内的大量查询实验显示了我们方法的好处,以及特定参数设置的影响。我们的代码、数据和互动式系统演示可公开查阅https://github.com/ghosh/CoQEx和https://ncouunqer.mpi-inf.mpg.de/。