To achieve good performance in face recognition, a large scale training dataset is usually required. A simple yet effective way to improve recognition performance is to use a dataset as large as possible by combining multiple datasets in the training. However, it is problematic and troublesome to naively combine different datasets due to two major issues. First, the same person can possibly appear in different datasets, leading to an identity overlapping issue between different datasets. Naively treating the same person as different classes in different datasets during training will affect back-propagation and generate non-representative embeddings. On the other hand, manually cleaning labels may take formidable human efforts, especially when there are millions of images and thousands of identities. Second, different datasets are collected in different situations and thus will lead to different domain distributions. Naively combining datasets will make it difficult to learn domain invariant embeddings across different datasets. In this paper, we propose DAIL: Dataset-Aware and Invariant Learning to resolve the above-mentioned issues. To solve the first issue of identity overlapping, we propose a dataset-aware loss for multi-dataset training by reducing the penalty when the same person appears in multiple datasets. This can be readily achieved with a modified softmax loss with a dataset-aware term. To solve the second issue, domain adaptation with gradient reversal layers is employed for dataset invariant learning. The proposed approach not only achieves state-of-the-art results on several commonly used face recognition validation sets, including LFW, CFP-FP, and AgeDB-30, but also shows great benefit for practical use.


翻译:要在面对面的识别中取得良好的表现,通常需要一个大规模的培训数据集。一个简单而有效的提高识别性的方法是使用尽可能大的数据集,将培训中的多个数据集组合起来。然而,由于两大问题,将不同的数据集天真地结合成不同的数据集是成问题和麻烦的。首先,同一人可能出现在不同的数据集中,导致不同数据集之间的身份重叠问题。在培训期间将同一人作为不同数据集的不同类别对待,将影响后变换,并生成不具有代表性的嵌入。另一方面,手工清理标签可能需要巨大的人类努力,特别是当有数百万个图像和数千个身份时。第二,在不同情况下收集不同的数据集,从而导致不同的域分布。同一人可能出现在不同的数据集中,从而导致不同数据集之间的差异性化嵌入问题。在这个文件中,我们建议DAIL:数据设置-Aware and Involitle Learning 解决上述问题,为了解决身份重叠的第一个问题,我们提议对数字变换的系统进行一个数据变换的系统确认,对于数据变换数据系统来说,这种变式的系统将显示一个数据变式的数据变式数据变式的版本。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
【经典书】线性代数,Linear Algebra,525页pdf
专知会员服务
76+阅读 · 2021年1月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
57+阅读 · 2019年11月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月8日
Arxiv
5+阅读 · 2020年3月17日
Arxiv
5+阅读 · 2018年12月18日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Arxiv
6+阅读 · 2018年6月21日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员