Belief propagation applied to iterative decoding and sparse recovery through approximate message passing (AMP) are two research areas that have seen monumental progress in recent decades. Inspired by these advances, this article introduces sparse regression LDPC codes and their decoding. Sparse regression codes (SPARCs) are a class of error correcting codes that build on ideas from compressed sensing and can be decoded using AMP. In certain settings, SPARCs are known to achieve capacity; yet, their performance suffers at finite block lengths. Likewise, LDPC codes can be decoded efficiently using belief propagation and can also be capacity achieving. This article introduces a novel concatenated coding structure that combines an LDPC outer code with a SPARC-inspired inner code. Efficient decoding for such a code can be achieved using AMP with a denoiser that performs belief propagation on the factor graph of the outer LDPC code. The proposed framework exhibits performance improvements over SPARCs and standard LDPC codes for finite block lengths and results in a steep waterfall in error performance, a phenomenon not observed in uncoded SPARCs. Findings are supported by numerical results.
翻译:用于迭代解码和通过近似信息传递(AMP)实现零星恢复的信仰传播是近几十年来取得巨大进展的两个研究领域,受这些进展的启发,这一条引入了稀有的回归LDPC代码及其解码。粗化回归代码是一个纠正代码的错误类别,它以压缩感的理念为基础,可以使用AMP进行解码。在某些情况下,人们知道SPRC能够实现能力;然而,它们的性能受限制区块长度的影响。同样,LDPC代码可以用信仰传播有效解码,也可以实现能力。这一条引入了一种新型的混合编码结构,将LDPC外部代码与SPARC启发的内部代码结合起来。可以使用AMP和一个对外部LDPC代码要素图进行传播的解码实现有效解码。拟议的框架展示了SPARC的性能改进,以及标准LDPC代码在有限区段长度方面的性能,并导致错误性能的急剧缺水,这是在未编码的SPARC结果中得到支持的一种现象。