Evolutionary anti-coordination games on networks capture real-world strategic situations such as traffic routing and market competition. In such games, agents maximize their utility by choosing actions that differ from their neighbors' actions. Two important problems concerning evolutionary games are the existence of a pure Nash equilibrium (NE) and the convergence time of the dynamics. In this work, we study these two problems for anti-coordination games under sequential and synchronous update schemes. For each update scheme, we examine two decision modes based on whether an agent considers its own previous action (self essential ) or not (self non-essential ) in choosing its next action. Using a relationship between games and dynamical systems, we show that for both update schemes, finding an NE can be done efficiently under the self non-essential mode but is computationally intractable under the self essential mode. To cope with this hardness, we identify special cases for which an NE can be obtained efficiently. For convergence time, we show that the best-response dynamics converges in a polynomial number of steps in the synchronous scheme for both modes; for the sequential scheme, the convergence time is polynomial only under the self non-essential mode. Through experiments, we empirically examine the convergence time and the equilibria for both synthetic and real-world networks.
翻译:网络上的进化反协调游戏可以捕捉现实世界的战略环境, 如交通路线和市场竞争。 在这样的游戏中, 代理商通过选择不同于邻居行动的行动, 最大限度地发挥它们的效用。 进化游戏的两个重要问题是纯纳什平衡( NE) 的存在和动态的趋同时间。 在这项工作中, 我们研究这两个问题, 在顺序和同步更新计划下, 用于反协调游戏。 对于每个更新计划, 我们研究两种决定模式, 依据一个代理商是否认为自己在选择其下一个行动( 自己是必需的) 或不( 自己是不必要的) 。 使用游戏和动态系统之间的关系, 我们显示, 对于两种更新计划来说, 寻找一个NE 是可以在非基本模式下高效地完成的, 但是在计算上很难操作。 为了应对这种困难, 我们找出可以高效地获得 NEE的特殊情况。 对于每一个更新计划, 我们发现, 最佳反应动态是结合两种模式的组合步骤( 自己是必需的) ( ) 。 对于顺序计划来说, 趋同时间是混合的, 和合成的实验网络 。</s>