Although the field of multi-agent reinforcement learning (MARL) has made considerable progress in the last years, solving systems with a large number of agents remains a hard challenge. Graphon mean field games (GMFGs) enable the scalable analysis of MARL problems that are otherwise intractable. By the mathematical structure of graphons, this approach is limited to dense graphs which are insufficient to describe many real-world networks such as power law graphs. Our paper introduces a novel formulation of GMFGs, called LPGMFGs, which leverages the graph theoretical concept of $L^p$ graphons and provides a machine learning tool to efficiently and accurately approximate solutions for sparse network problems. This especially includes power law networks which are empirically observed in various application areas and cannot be captured by standard graphons. We derive theoretical existence and convergence guarantees and give empirical examples that demonstrate the accuracy of our learning approach for systems with many agents. Furthermore, we extend the Online Mirror Descent (OMD) learning algorithm to our setup to accelerate learning speed, empirically show its capabilities, and conduct a theoretical analysis using the novel concept of smoothed step graphons. In general, we provide a scalable, mathematically well-founded machine learning approach to a large class of otherwise intractable problems of great relevance in numerous research fields.


翻译:虽然多试剂加固学习领域在过去几年里取得了相当大的进展,但用大量代理商解决系统仍然是一个艰巨的挑战。Greamon 平均野外游戏(GMFGs)能够对本可棘手的MARL问题进行可扩缩的分析。根据图形的数学结构,这一方法仅限于密集的图形,不足以描述许多真实世界的网络,如电法图。我们的论文介绍了一种新型的GMFGs(称为LPGMFGGs)配制,它利用了$L<unk> p$的图形理论概念,提供了一种机器学习工具,以高效和准确地近似解决分散的网络问题。这特别包括在不同应用领域以经验方式观测到的、无法被标准图形所捕捉的电力法网络。我们从理论上存在和趋同的保证以及提供经验性实例,表明我们对许多代理商的系统学习方法的准确性。此外,我们把在线镜源算算法推广到我们的设置,以加快学习速度,实验性地展示其能力,并利用新颖的平整步图概念来进行理论分析。一般来说,我们提供了一个巨大的高层次的数学研究领域。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月21日
Arxiv
16+阅读 · 2022年11月21日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
Arxiv
0+阅读 · 2023年4月21日
Arxiv
16+阅读 · 2022年11月21日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
12+阅读 · 2019年3月14日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员