In this paper, we propose an approximating framework for analyzing parametric Markov models. Instead of computing complex rational functions encoding the reachability probability and the reward values of the parametric model, we exploit the scenario approach to synthesize a relatively simple polynomial approximation. The approximation is probably approximately correct (PAC), meaning that with high confidence, the approximating function is close to the actual function with an allowable error. With the PAC approximations, one can check properties of the parametric Markov models. We show that the scenario approach can also be used to check PRCTL properties directly, without synthesizing the polynomial at first hand. We have implemented our algorithm in a prototype tool and conducted thorough experiments. The experimental results demonstrate that our tool is able to compute polynomials for more benchmarks than state of the art tools such as PRISM and Storm, confirming the efficacy of our PAC-based synthesis.
翻译:在本文中,我们提出了一种近似框架来分析参数化马尔可夫模型。我们没有计算编码参数模型的可达性概率和收益值的复杂有理函数,而是利用场景法来合成相对简单的多项式逼近。逼近函数是可能近似正确(PAC)的,这意味着我们可以高度自信地认为逼近函数与实际函数非常接近,同时允许一定的误差。通过PAC逼近,可以检查参数化马尔可夫模型的性质。我们展示了场景法也可以用于直接检查PRCTL属性,无需首先合成多项式。我们在原型工具中实现了我们的算法,并进行了彻底的实验。实验结果表明,我们的工具能够计算比PRISM和Storm等现有工具更多的基准模型的多项式,验证了我们基于PAC的合成的有效性。