We propose Continual Repeated Annealed Flow Transport Monte Carlo (CRAFT), a method that combines a sequential Monte Carlo (SMC) sampler (itself a generalization of Annealed Importance Sampling) with variational inference using normalizing flows. The normalizing flows are directly trained to transport between annealing temperatures using a KL divergence for each transition. This optimization objective is itself estimated using the normalizing flow/SMC approximation. We show conceptually and using multiple empirical examples that CRAFT improves on Annealed Flow Transport Monte Carlo (Arbel et al., 2021), on which it builds and also on Markov chain Monte Carlo (MCMC) based Stochastic Normalizing Flows (Wu et al., 2020). By incorporating CRAFT within particle MCMC, we show that such learnt samplers can achieve impressively accurate results on a challenging lattice field theory example.
翻译:我们建议采用连续重复的Annealed Flow Transport Monte Carlo(CRAFT)方法,将连续的Monte Carlo(SMC)取样员(其本身是Annaaled Enior Enitial Sampling)与使用正常流流的变异推导相结合。正常流直接经过培训,在每次过渡中使用KL差分在麻醉温度之间进行运输。这一优化目标本身是使用正常流/SMC近似值来估计的。我们从概念上和多个经验上展示了CRAFT改进了Annaaled Flow Transport Monte Carlo(Arbel等人,2021年),这是CRAFT的基础,也是Markov 链 Montecar(Monte Car(MCC) ), 以Stochical 常态流(Wu等人,2020年)为基础。通过将CRAFT纳入粒子MC,我们表明,通过将CMC,这种学习的取样员可以在具有挑战性的拉tice实地理论中取得令人印象深刻的准确的结果。