Simulating from the multivariate truncated normal distribution (MTN) is required in various statistical applications yet remains challenging in high dimensions. Currently available algorithms and their implementations often fail when the number of parameters exceeds a few hundred. To provide a general computational tool to efficiently sample from high-dimensional MTNs, we introduce the hdtg package that implements two state-of-the-art simulation algorithms: harmonic Hamiltonian Monte Carlo (harmonic-HMC) and zigzag Hamiltonian Monte Carlo (Zigzag-HMC). Both algorithms exploit analytical solutions of the Hamiltonian dynamics under a quadratic potential energy with hard boundary constraints, leading to rejection-free methods. We compare their efficiencies against another state-of-the-art algorithm for MTN simulation, the minimax tilting accept-reject sampler (MET). The run-time of these three approaches heavily depends on the underlying multivariate normal correlation structure. Zigzag-HMC and harmonic-HMC both achieve 100 effective samples within 3,600 seconds across all tests with dimension ranging from 100 to 1,600, while MET has difficulty in several high-dimensional examples. We provide guidance on how to choose an appropriate method for a given situation and illustrate the usage of hdtg.
翻译:在各种统计应用中,需要从多变拖网正常分布法(MTN)中模拟多变式正常分布法(MTN),但在高维方面仍然具有挑战性。当参数数超过几百个时,现有的算法及其实施往往会失败。为了提供一个通用计算工具,以便高效地从高维MTN中抽取高效样本,我们引入了使用两种最先进的模拟算法的 hdtg 软件包:汉密尔顿-蒙特卡洛调和汉密尔顿-蒙特卡洛兹格-汉密尔顿-汉密尔顿-蒙特-卡罗调。两种算法在具有硬边界限制的二次能量下利用汉密尔顿动力的分析解决方案,导致无排斥方法。我们将其效率与MTN模拟的另一种最先进的算法(MTN,即微型倾斜倾斜式接受点采样器(MET)进行对比。这三种方法的运行时间在很大程度上取决于基本的多变式正常关联结构。Zigzag-HMMC和C调度-HMMMMC在3600秒内获得100个有效样本,涵盖从100至1600至1600个层面的所有测试,我们选择如何选择一个高维方法。