Multi-fidelity methods leverage low-cost surrogate models to speed up computations and make occasional recourse to expensive high-fidelity models to establish accuracy guarantees. Because surrogate and high-fidelity models are used together, poor predictions by surrogate models can be compensated with frequent recourse to high-fidelity models. Thus, there is a trade-off between investing computational resources to improve the accuracy of surrogate models versus simply making more frequent recourse to expensive high-fidelity models; however, this trade-off is ignored by traditional modeling methods that construct surrogate models that are meant to replace high-fidelity models rather than being used together with high-fidelity models. This work considers multi-fidelity importance sampling and theoretically and computationally trades off increasing the fidelity of surrogate models for constructing more accurate biasing densities and the numbers of samples that are required from the high-fidelity models to compensate poor biasing densities. Numerical examples demonstrate that such context-aware surrogate models for multi-fidelity importance sampling have lower fidelity than what typically is set as tolerance in traditional model reduction, leading to runtime speedups of up to one order of magnitude in the presented examples.


翻译:多纤维化方法利用低成本替代模型来加快计算速度,并偶尔采用昂贵的高纤维化模型来建立准确性保证。由于代用模型和高纤维化模型同时使用,代用模型预测不善可以经常采用高纤维化模型来补偿。因此,在投资计算资源以提高代用模型的准确性,而只是更经常地采用昂贵的高纤维化模型来补偿不准确的偏向性模型之间,存在着一种权衡;然而,这种权衡被传统模型所忽视,这些模型是用来取代高纤维化模型的,而不是与高纤维化模型一起使用。 这项工作考虑到多纤维化模型的重要性抽样以及从增加代用模型的忠实性来增加代用模型的理论和计算性交易,以便提高代用模型的准确性,从而提高代用高纤维化模型的准确性,而只是更经常地采用昂贵的高纤维化模型来弥补不准确的偏向性密度模型; 数字实例表明,在多纤维化重要模型取样中,这种背景认知的代用模型比典型的耐久性模型速度要低,这是典型的减缩模式中的一种。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月2日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员