This paper proposes a Bayesian model to compare multiple algorithms on multiple data sets, on any metric. The model is based on the Bradley-Terry model, that counts the number of times one algorithm performs better than another on different data sets. Because of its Bayesian foundations, the Bayesian Bradley Terry model (BBT) has different characteristics than frequentist approaches to comparing multiple algorithms on multiple data sets, such as Demsar (2006) tests on mean rank, and Benavoli et al. (2016) multiple pairwise Wilcoxon tests with p-adjustment procedures. In particular, a Bayesian approach allows for more nuanced statements regarding the algorithms beyond claiming that the difference is or it is not statistically significant. Bayesian approaches also allow to define when two algorithms are equivalent for practical purposes, or the region of practical equivalence (ROPE). Different than a Bayesian signed rank comparison procedure proposed by Benavoli et al. (2017), our approach can define a ROPE for any metric, since it is based on probability statements, and not on differences of that metric. This paper also proposes a local ROPE concept, that evaluates whether a positive difference between a mean measure across some cross validation to the mean of some other algorithms is should be really seen as the first algorithm being better than the second, based on effect sizes. This local ROPE proposal is independent of a Bayesian use, and can be used in frequentist approaches based on ranks. A R package and a Python program that implements the BBT is available.
翻译:本文建议采用贝叶西亚模型来比较多个数据集的多重算法, 以任何尺度为基础。 该模型基于布拉德利- 泰瑞模型, 计算一个算法在不同的数据集中表现优于另一个算法的次数。 由于拜伊西亚基金会, 巴伊西亚布拉德利· 特里模型(BBT) 具有不同的特点, 而不是经常比较多个数据集的多重算法方法, 比如: Demsar(2006年) 平均等级测试, Benavoli 等人( 2017年), 我们的方法可以定义任何等级的对称 Wilcoxon 测试, 并使用 p调整程序。 特别是, 巴伊西亚方法允许对算法进行更细致的描述, 而不是声称差异是或不是统计上重要的。 巴伊西亚模型还允许界定两种算法在实际目的或实际等同区域( ROPE) 中是否等同两种算法。 不同于Ban 标准, 我们的方法可以定义任何本地等级的ROPE, 因为它基于概率说明, 而不是该指标的差别。 本文还提出一个本地 RAP 概念,,, 是要评估一个地方的经常算算算法 是否代表了B 的比 的数值, 的比其他的数值的数值的数值的数值的尺度的尺度的尺度的尺度, 。