This paper proposes a Bayesian model to compare multiple algorithms on multiple data sets, on any metric. The model is based on the Bradley-Terry model, that counts the number of times one algorithm performs better than another on different data sets. Because of its Bayesian foundations, the Bayesian Bradley Terry model (BBT) has different characteristics than frequentist approaches to comparing multiple algorithms on multiple data sets, such as Demsar (2006) tests on mean rank, and Benavoli et al. (2016) multiple pairwise Wilcoxon tests with p-adjustment procedures. In particular, a Bayesian approach allows for more nuanced statements regarding the algorithms beyond claiming that the difference is or it is not statistically significant. Bayesian approaches also allow to define when two algorithms are equivalent for practical purposes, or the region of practical equivalence (ROPE). Different than a Bayesian signed rank comparison procedure proposed by Benavoli et al. (2017), our approach can define a ROPE for any metric, since it is based on probability statements, and not on differences of that metric. This paper also proposes a local ROPE concept, that evaluates whether a positive difference between a mean measure across some cross validation to the mean of some other algorithms is should be really seen as the first algorithm being better than the second, based on effect sizes. This local ROPE proposal is independent of a Bayesian use, and can be used in frequentist approaches based on ranks. A R package and a Python program that implements the BBT is available.


翻译:本文建议采用贝叶西亚模型来比较多个数据集的多重算法, 以任何尺度为基础。 该模型基于布拉德利- 泰瑞模型, 计算一个算法在不同的数据集中表现优于另一个算法的次数。 由于拜伊西亚基金会, 巴伊西亚布拉德利· 特里模型(BBT) 具有不同的特点, 而不是经常比较多个数据集的多重算法方法, 比如: Demsar(2006年) 平均等级测试, Benavoli 等人( 2017年), 我们的方法可以定义任何等级的对称 Wilcoxon 测试, 并使用 p调整程序。 特别是, 巴伊西亚方法允许对算法进行更细致的描述, 而不是声称差异是或不是统计上重要的。 巴伊西亚模型还允许界定两种算法在实际目的或实际等同区域( ROPE) 中是否等同两种算法。 不同于Ban 标准, 我们的方法可以定义任何本地等级的ROPE, 因为它基于概率说明, 而不是该指标的差别。 本文还提出一个本地 RAP 概念,,, 是要评估一个地方的经常算算算法 是否代表了B 的比 的数值, 的比其他的数值的数值的数值的数值的尺度的尺度的尺度的尺度, 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
专知会员服务
162+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
0+阅读 · 2022年10月2日
Arxiv
0+阅读 · 2022年9月30日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
专知会员服务
162+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员