In the present note, we study a new method of constructing efficient coverings for Kronecker powers of matrices, recently proposed by J. Alman, Y. Guan, A. Padaki [arXiv, 2022]. We provide an alternative proof for the case of symmetric matrices in a stronger form. As a consequence, the previously known upper bound on the depth-2 additive complexity of the boolean $N\times N$ Kneser-Sierpinski matrices is improved to $O(N^{1.251})$.
翻译:在本说明中,我们研究了由J. Alman、Y. Guan、A. Padaki[ARXiv, 2022]最近提出的为克罗内克矩阵权力建立有效覆盖物的新方法,我们为对称矩阵以较强的形式提供了另一种证据,因此,先前已知的布林恩元-克涅尔-西耶平斯基矩阵深度-2添加复合物的上限已提高到1美元(N ⁇ 1.251})。