We consider multi-population Bayesian games with a large number of players. Each player aims at minimizing a cost function that depends on her own action, the distribution of players' actions in all populations, and an unknown state parameter. We study the nonatomic limit versions of these games. We introduce the concept of Bayes correlated Wardrop equilibrium, which extends the concept of Bayes correlated equilibrium to nonatomic games. We prove that Bayes correlated Wardrop equilibria are limits of action flows induced by Bayes correlated equilibria of the game with a large finite set of small players. For nonatomic games with complete information admitting a convex potential, we prove that the set of correlated and of coarse correlated Wardrop equilibria, are reduced to the set of probability distributions over Wardrop equilibria, and that all equilibrium outcomes have the same costs. We get the following consequences. First, all flow distributions of (coarse) correlated equilibria in convex potential games with finitely many players converge to Wardrop equilibria when the weight of each player tends to zero. Second, for any sequence of flows satisfying no-regret property, its empirical distribution converges to the set of distributions over Wardrop equilibria and the average cost converges to the unique Wardrop cost.
翻译:我们考虑的是众多球员的多人口贝雅人游戏。 每个球员的目标是最大限度地减少一个取决于她自身行动的成本功能, 球员在全部人群中的动作分布, 以及一个未知的状态参数。 我们研究这些游戏的非原子限制版本。 我们引入了Bayes相关Wardrop均衡的概念, 将Bayes相关平衡的概念扩展至非原子游戏。 我们得到了以下结果。 首先, Bayes相关Ways相关战点平衡是Bayes相关游戏中与众多小球员相对平衡的动作流的局限性。 对于拥有完整信息的非原子游戏, 承认了共轴潜力, 我们证明一组相关和粗粗相相对的Wardrop 平衡, 被减为Waydrop equibloria 的概率分布组合, 并且所有均衡结果都具有相同的成本。 首先, 所有流( 粗的) 相近( 相近的) 相近( ) 等点游戏中与众多球员的潜在运动流流流到Warvold 均匀, 当每个球员的重量趋向于零时, 我们证明相近的一组相对相对相对相对的游戏, 和粗略的阵列的阵列的阵列的阵列的阵列的阵列的阵势分布会减后, 。 第二, 所有的阵列的阵列的阵列的阵列的阵列的阵列的阵列的阵列的阵列的阵列的阵列的阵列的阵列的阵列的阵列的阵列的阵列的阵列的阵, 。