This work suggests several methods of uncertainty treatment in multiscale modelling and describes their application to a system of coupled turbulent transport simulations of a tokamak plasma. We propose a method to quantify the usually aleatoric uncertainty of a system in a quasi-stationary state, estimating the mean values and their errors for quantities of interest, which is average heat fluxes in the case of turbulence simulations. The method defines the stationarity of the system and suggests a way to balance the computational cost of simulation and the accuracy of estimation. This allows, contrary to many approaches, to incorporate aleatoric uncertainties in the analysis of the model and to have a quantifiable decision for simulation runtime. Furthermore, the paper describes methods for quantifying the epistemic uncertainty of a model and the results of such a procedure for turbulence simulations, identifying the model's sensitivity to particular input parameters and sensitivity to uncertainties in total. Finally, we introduce a surrogate model approach based on Gaussian Process Regression and present a preliminary result of training and analysing the performance of such a model based on turbulence simulation data. Such an approach shows a potential to significantly decrease the computational cost of the uncertainty propagation for the given model, making it feasible on current HPC systems.
翻译:暂无翻译