This article unveils a new relation between the Nishimori temperature parametrizing a distribution P and the Bethe free energy on random Erdos-Renyi graphs with edge weights distributed according to P. Estimating the Nishimori temperature being a task of major importance in Bayesian inference problems, as a practical corollary of this new relation, a numerical method is proposed to accurately estimate the Nishimori temperature from the eigenvalues of the Bethe Hessian matrix of the weighted graph. The algorithm, in turn, is used to propose a new spectral method for node classification in weighted (possibly sparse) graphs. The superiority of the method over competing state-of-the-art approaches is demonstrated both through theoretical arguments and real-world data experiments.
翻译:本文揭示了尼希莫里温度对分布式P和随机Erdos-Renyi图表自由能量之间的新关系。 根据P. 估计尼希莫里温度是巴伊西亚推论问题的一个重要任务,作为这一新关系的一个实际推论,提议了一种数字方法,以精确估计从加权图的Bethe Hessian矩阵的叶值中产生的尼希莫里温度。 算法又被用来提出一种新的光谱方法,用于加权(可能稀少的)图表的节点分类。该方法优于相互竞争的先进方法,通过理论论和现实世界数据实验加以证明。