We propose a spectral clustering algorithm for analyzing the dependence structure of multivariate extremes. More specifically, we focus on the asymptotic dependence of multivariate extremes characterized by the angular or spectral measure in extreme value theory. Our work studies the theoretical performance of spectral clustering based on a random $k$-nearest neighbor graph constructed from an extremal sample, i.e., the angular part of random vectors for which the radius exceeds a large threshold. In particular, we derive the asymptotic distribution of extremes arising from a linear factor model and prove that, under certain conditions, spectral clustering can consistently identify the clusters of extremes arising in this model. Leveraging this result we propose a simple consistent estimation strategy for learning the angular measure. Our theoretical findings are complemented with numerical experiments illustrating the finite sample performance of our methods.
翻译:我们提出了用于分析多变极端依赖结构的光谱群集算法。 更具体地说, 我们注重极端价值理论中以角度或光谱测量为特征的多变极端的无症状依赖性。 我们的工作研究光谱群集的理论性能, 以随机的 $k$- 最近的近邻图形为基础, 即半径超过大阈值的随机矢量的角部分。 特别是, 我们从线性要素模型中得出极端的无症状分布, 并证明在某些条件下, 光谱群集可以始终辨别该模型中出现的极端群。 利用这一结果, 我们提出了一个简单的、 一致的估计战略, 用于学习角测量。 我们的理论发现与数字实验相辅相成, 以说明我们方法的有限样本性能。