Spectral graph convolutional neural networks (CNNs) require approximation to the convolution to alleviate the computational complexity, resulting in performance loss. This paper proposes the topology adaptive graph convolutional network (TAGCN), a novel graph convolutional network defined in the vertex domain. We provide a systematic way to design a set of fixed-size learnable filters to perform convolutions on graphs. The topologies of these filters are adaptive to the topology of the graph when they scan the graph to perform convolution. The TAGCN not only inherits the properties of convolutions in CNN for grid-structured data, but it is also consistent with convolution as defined in graph signal processing. Since no approximation to the convolution is needed, TAGCN exhibits better performance than existing spectral CNNs on a number of data sets and is also computationally simpler than other recent methods.
翻译:光谱图谱神经神经网络(CNNs) 需要近似于变相, 以缓解计算的复杂性, 从而导致性能损失 。 本文建议使用在顶端域定义的新型图形变相网络( TAGCN ) 。 我们提供系统的方法来设计一套固定规模的可学习过滤器, 以在图形上进行变相。 这些过滤器的地形在扫描图形以进行变相时会适应图形的表层学 。 TAGCN 不仅继承CN CN 中电网结构化数据的变异特性, 也符合图形信号处理中定义的变异特性 。 由于不需要接近电动, TAGCN 在一系列数据集上展示比现有光谱CNN更好的性能, 并且比其他最近的方法更简单计算 。