Many real-world relational systems, such as social networks and biological systems, contain dynamic interactions. When learning dynamic graph representation, it is essential to employ sequential temporal information and geometric structure. Mainstream work achieves topological embedding via message passing networks (e.g., GCN, GAT). The temporal evolution, on the other hand, is conventionally expressed via memory units (e.g., LSTM or GRU) that possess convenient information filtration in a gate mechanism. Though, such a design prevents large-scale input sequence due to the over-complicated encoding. This work learns from the philosophy of self-attention and proposes an efficient spectral-based neural unit that employs informative long-range temporal interaction. The developed spectral window unit (SWINIT) model predicts scalable dynamic graphs with assured efficiency. The architecture is assembled with a few simple effective computational blocks that constitute randomized SVD, MLP, and graph Framelet convolution. The SVD plus MLP module encodes the long-short-term feature evolution of the dynamic graph events. A fast framelet graph transform in the framelet convolution embeds the structural dynamics. Both strategies enhance the model's ability on scalable analysis. In particular, the iterative SVD approximation shrinks the computational complexity of attention to O(Nd\log(d)) for the dynamic graph with N edges and d edge features, and the multiscale transform of framelet convolution allows sufficient scalability in the network training. Our SWINIT achieves state-of-the-art performance on a variety of online continuous-time dynamic graph learning tasks, while compared to baseline methods, the number of its learnable parameters reduces by up to seven times.
翻译:社交网络和生物系统等许多真实世界关系系统包含动态互动。 当学习动态图形表达方式时, 使用顺序时间信息与几何结构至关重要。 主流工作通过信息传递网络( 如 GCN 、 GAT ) 实现地形嵌入。 另一方面, 时间演进通常通过记忆单位( 如 LSTM 或 GRU ) 进行表达, 这些单位拥有方便的信息过滤功能。 虽然这样的设计可以防止由于过于复杂的编码而导致的大规模边际输入序列。 这项工作学习了自控理论, 并提出了高效的光谱神经单位, 利用信息传递网络( 如 GCN 、 GAT ) 。 开发的光谱窗口单位( SWINIT ) 模型以有一定效率的方式预测可扩展的动态图表。 结构由几个简单有效的计算块组成, 随机的 SVD、 NLP 和图形组合数 。 SVD 和 MLP 模块将动态图表中的长期短期变量变异性动态动态的变异性模型, 在动态图表中, 快速的SLIFLT 格式分析中,, 快速的演进化模型中, 的演化模型中, 的演进进进式模型系统, 学习系统, 的演化模型, 的演进进进进式的系统, 的演算法, 和演进式的演进式的演进制, 的演进式的系统, 的系统, 进制的演进进制的演算法, 进法, 进制式的演进制的变法, 系统, 进制的变式的变式的演进制式的变式的演进制的变式的变式的演进制的变式的变式的变式的变式的演进制的变式的变式的变式的系统,, 。