Sentiment analysis, especially for long documents, plausibly requires methods capturing complex linguistics structures. To accommodate this, we propose a novel framework to exploit task-related discourse for the task of sentiment analysis. More specifically, we are combining the large-scale, sentiment-dependent MEGA-DT treebank with a novel neural architecture for sentiment prediction, based on a hybrid TreeLSTM hierarchical attention model. Experiments show that our framework using sentiment-related discourse augmentations for sentiment prediction enhances the overall performance for long documents, even beyond previous approaches using well-established discourse parsers trained on human annotated data. We show that a simple ensemble approach can further enhance performance by selectively using discourse, depending on the document length.
翻译:感官分析,特别是长篇文件的感官分析,显然需要掌握复杂的语言结构的方法。为此,我们提出一个新的框架,利用与任务相关的话语来分析情绪。更具体地说,我们正在将大规模、情绪依赖MEGA-DT树库与基于混合的TreamLSTM层次关注模式的情绪预测神经结构结合起来。实验表明,我们使用情感相关话语增强情绪预测的框架,增强了长篇文件的总体性能,甚至超越了以往使用受过人类附加说明数据培训的讲解员的方法。我们表明,一个简单的共通方法可以通过有选择地使用话语来进一步提高绩效,这取决于文件长度。