Sentence simplification aims to simplify the content and structure of complex sentences, and thus make them easier to interpret for human readers, and easier to process for downstream NLP applications. Recent advances in neural machine translation have paved the way for novel approaches to the task. In this paper, we adapt an architecture with augmented memory capacities called Neural Semantic Encoders (Munkhdalai and Yu, 2017) for sentence simplification. Our experiments demonstrate the effectiveness of our approach on different simplification datasets, both in terms of automatic evaluation measures and human judgments.
翻译:简化刑期的目的是简化复杂刑期的内容和结构,从而使这些内容和结构更容易为读者解释,并更容易为下游NLP应用程序处理。神经机能翻译的最新进展为新颖的任务方法铺平了道路。在本文件中,我们调整了一个强化记忆能力的结构,称为神经语义编码器(Munkhdalai和Yu,2017年),用于简化刑期。我们的实验表明,我们在自动评估措施和人类判断方面对不同的简化数据集采取的方法是有效的。