While the general task of textual sentiment classification has been widely studied, much less research looks specifically at sentiment between a specified source and target. To tackle this problem, we experimented with a state-of-the-art relation extraction model. Surprisingly, we found that despite reasonable performance, the model's attention was often systematically misaligned with the words that contribute to sentiment. Thus, we directly trained the model's attention with human rationales and improved our model performance by a robust 4~8 points on all tasks we defined on our data sets. We also present a rigorous analysis of the model's attention, both trained and untrained, using novel and intuitive metrics. Our results show that untrained attention does not provide faithful explanations; however, trained attention with concisely annotated human rationales not only increases performance, but also brings faithful explanations. Encouragingly, a small amount of annotated human rationales suffice to correct the attention in our task.


翻译:虽然对文字情绪分类的一般任务进行了广泛研究,但研究更没有具体地审视特定来源和目标之间的情绪。为了解决这一问题,我们试验了一种最先进的提取关系模型。令人惊讶的是,我们发现,尽管表现合理,但模型的注意力往往系统地与有助于情感的词语不相符。因此,我们直接用人的理由来训练模型的注意力,并用我们确定的所有数据组任务4~8点来改进我们的模型性能。我们还用新颖和直观的衡量尺度对模型的注意力进行了严格分析,既经过训练,又未经训练。我们的结果显示,未经训练的注意力并不能提供忠实的解释;然而,经过训练的注意力不仅简要地说明人的理由,不仅提高了业绩,而且还带来了忠实的解释。令人鼓舞的是,少量附加说明的人类理由足以纠正我们任务中的注意力。

5
下载
关闭预览

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。
注意力机制介绍,Attention Mechanism
专知会员服务
168+阅读 · 2019年10月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
原创 | Attention Modeling for Targeted Sentiment
黑龙江大学自然语言处理实验室
25+阅读 · 2017年11月5日
Arxiv
5+阅读 · 2018年1月23日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关VIP内容
注意力机制介绍,Attention Mechanism
专知会员服务
168+阅读 · 2019年10月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
原创 | Attention Modeling for Targeted Sentiment
黑龙江大学自然语言处理实验室
25+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员