In multi-agent settings, game theory is a natural framework for describing the strategic interactions of agents whose objectives depend upon one another's behavior. Trajectory games capture these complex effects by design. In competitive settings, this makes them a more faithful interaction model than traditional "predict then plan" approaches. However, current game-theoretic planning methods have important limitations. In this work, we propose two main contributions. First, we introduce an offline training phase which reduces the online computational burden of solving trajectory games. Second, we formulate a lifted game which allows players to optimize multiple candidate trajectories in unison and thereby construct more competitive "mixed" strategies. We validate our approach on a number of experiments using the pursuit-evasion game "tag."
翻译:在多试剂环境下,游戏理论是描述目标取决于彼此行为的行为的代理人的战略互动的自然框架。 轨迹游戏通过设计来捕捉这些复杂的影响。 在竞争性环境中, 这使得它们比传统的“ 预测然后计划” 方法更忠实的互动模式。 然而, 目前游戏理论规划方法有重大局限性。 在这项工作中, 我们提出两个主要贡献 。 首先, 我们引入一个脱机培训阶段, 减少解决轨迹游戏的在线计算负担 。 其次, 我们设计了一个取消的游戏, 让玩家能够优化多个候选轨迹, 从而构建更具竞争力的“ 混合” 策略。 我们用追逐- 蒸发游戏“ 停滞 ” 来验证我们的方法 。