To avoid the curse of dimensionality, a common approach to clustering high-dimensional data is to first project the data into a space of reduced dimension, and then cluster the projected data. Although effective, this two-stage approach prevents joint optimization of the dimensionality-reduction and clustering models, and obscures how well the complete model describes the data. Here, we show how a family of such two-stage models can be combined into a single, hierarchical model that we call a hierarchical mixture of Gaussians (HMoG). An HMoG simultaneously captures both dimensionality-reduction and clustering, and its performance is quantified in closed-form by the likelihood function. By formulating and extending existing models with exponential family theory, we show how to maximize the likelihood of HMoGs with expectation-maximization. We apply HMoGs to synthetic data and RNA sequencing data, and demonstrate how they exceed the limitations of two-stage models. Ultimately, HMoGs are a rigorous generalization of a common statistical framework, and provide researchers with a method to improve model performance when clustering high-dimensional data.


翻译:为了避免维度的诅咒,将高维数据分组的通用方法是首先将数据投射到一个降低维度的空间,然后将预测的数据分组。虽然这一两阶段方法有效,但阻止了对维度减少和组集模型的联合优化,并模糊了完整的模型对数据描述的准确性。这里,我们展示了如何将这种两阶段模型的组合合并成一个单一的等级模型,我们称之为高森的等级混合。一个HMOG同时捕捉了维度减少和组集,其性能按可能性函数以封闭形式量化。我们用指数式家庭理论来制定和推广现有模型,我们展示了如何最大限度地利用预期-最大程度的合成数据和RNA排序数据的可能性。我们将HMOG应用于合成数据和RNA数据排序,并展示它们如何超越两阶段模型的局限性。最终,HMOG是共同统计框架的严格概括,并为研究人员提供在将高维度数据组合时改进模型性能的方法。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
161+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月26日
Arxiv
0+阅读 · 2022年7月22日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员